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Transport Functions of Nitrogen up to 26,000°K * ** /333

W. Hermann and E. Schade

Elektrophysikalisches Institut der Technischen Hochschule, Muenchen

Submitted 19 October 1969

Abstract

The E(1)-characteristic and a large number of T(r,l)-distri-

butions measured in a 5 mm _ N 2 cascade arc at normal pressure are

used to evaluate the transport properties of nitrogen up to

26,000°K. The electrical conductivity _(T) and from this the cross-

section for atom-electron collision and the Coulomb-cross-section

are determined directly from the E(1)- and several T(r,l) curves.

For the evaluation of the thermal conductivity K(T) three temperature

regions are discerned_ Up to about lO,O00°K K(T) is derived

derived directly from the energy equation since here the energy

transport by radiation does not play an important role. Between

i0,000 and 15,000°K the radiative energy flux for different arc

currents, the thermal conductivity and from this the charge exchange

cross-section are determined in a good approximation utilizing the

large number of measured temperature distributions. Above 15,000°K

the already evaluated collision cross-sections are used to compute

K(T). With K(T) known the radial distribution of the balance
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between emission and absorption of radiative power per unit volume

is evaluated for different arc currents. It turns out, that at

the highest measured arc current, i.e. 570 A, in the axial region

of the arc about 95% of the supplied energy is carried off by

radiation.

I. Introduction

The cylindrical cascade arc is an especially suited arrangement

for experimental determinations of transport coefficients of

hot gases and plasmas. Its simple geometry makes possible the

evaluation of the desired material functions with the aid of the

Elenbaas-Heller energy equation from the measured current-field

strength characteristic E(1) and various radial temperature

distributions T(r,l). In the cascade arc described by Maecke_ (i)

and especially in the improved version of Maecker and Steinberger (2)

it is possible to generate plasmas up to maximum temperatures of

26,000°K corresponding to a degree of ionization of above 100%

in a stationary manner.

Earlier investigations of this type with the nitrogen arc /334

(Burhorn, ref. 3 to 19,000°K; Maecker, ref. 4, to 16,000°K) produced

results, for the electrical conductivity o(T) over the entire

temperature range considered, for the thermal conductivity K(T)

to about i0,000 - 12,000°K, which agreed well with theory. Above

this limit the experimental K(T) values were found, to an increasing

degree, to lie above the theoretical curve. Above all there was

not, as shown by Maecker (5), anyflattemin{ of the curve of the

K(T) results corresponding to a maximum which was to be expected

at 14,500°K as a result of ionization. Even a refinement of this

evaluation method by Uhlenbusch (6) and Monterde (7) did not change

this discrepancy between theory and measurements. Rather the

reason for this deviation lies in the fact that inall these

evaluation methods, beside the thermal heat conduction, only the

energy loss by transparent radiation was taken into account.

In reality, however, above 10,000°K the energy transport resulting
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from the radiation emitted in the arc and then again absorbed

becomes important to an increasing degree. Thus, in this temperature

range, there appears in the energy equation, in addition to the

pure temperature function a(T), K(T)and the emission of radiation

power per. unit volume e(T) also the absorption of radiation power

per unit volume a(T,T A) which depends not only on the temperature

at the point of incidence, but also on the radiation field'in the

entire arc, i.e. on the axis temperature TA and thus on the electric
data.

If the temperature- and frequency dependence of the absorptien

coefficients_(v,T) were completely known, one could, for measured

temperature distributions, calculate (8-10) the emission and

absorption of radiation as a function of the location on the arc

with the aid of the radiation transport equation. Then by means

of the integrated Ohm's law and the energy equation the electrical

and thermal conductivities _(T), resp. K(T) could be determined

from the measurements. However, since is (v,T) is not known with

sufficient accuracy, we shall present and carry out in the following

a method which allows the evaluation of arc measurements without

assumptions of emission - and absorption coefficients, i.e. without

using the radiation transport equation. /335

The radial temperature distribntions T(r,l) on which this work

is based, were measured by Schade (ii) in an N2 cascade arc of 5 mm

diameter at atmospheric pressure in very narrow current steps

up to a maximum axis temperature of 26,000°K corresponding to a

degree of ionization of 115%. The associated E(1) characteristic

was determined by Plantikow (12) up to a current strength of 570 A.

Since the radial temperature distributions are given for many

current strengths, the electrical conductivity a(T) can be evaluated

directly over the entire temperature range considered with the aid

of the temperature distributions and the E(1) characteristic. Up

to temperatures of about lO,O00°K the radiation contribution to

the energy transport can be disregarded so that even K(T) can be

determined directly. Between i0,000 and 15,000°K it is possible,

with the aid of the current values determined in very close intervals
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the balance u(T,l) between the radiation power emitted, e(T), and

absorbed, a(T,l), per unit volume can be, determined with good

approximation and thus K(T) can again be determined.

Above 15,000°K the energy transport by heat conduction compared

to that by radiation plays an increasingly minor role. In this

range the thermal conductivity is calculated from the directly

evaluated electrical conductivity using euqations •from kinetic

gas theory. With the aid of these two functions the radiation

behavior of the arc can then be evaluated. Thus we obtain by

evaluation not only _(T) and K(T) to 26,000°K but also the radial

dependence of the radiation balance u(T,l) = e(T) - a(T,l) of the

arc investigated for all measured current strengths.

II. Basic Equations

The energy balance in a volume element of the arc is described

by the Elenbaas-Heller differential equation•

aE2-divqT-divqs=O.

The product of the electrical conductivity _ and the square of the

electrical field strength E2 gives the energy added, per unit time

and volume, through ohmic heating. This is carried off partially

by heat conduction and partially by radiation. The vector qr=-xVT

is the heating current density; thus divqT represents the difference

between the power conducted in and out per unit volume by heat

conduction. The balance u between the radiation power e, carried /336

off per unit volume, and that added by absorption a, equals the

divergence of the vector qs of the radiation current density

divqs=u=e-a.

For cylindrical symmetry the energy equation becomes, as a function

Of p2 = r2/R 2 :
4 d [ 2 dT_

_0*



The total current I is given by the integral over the current

density j=aE in an arc cross section:
I

l= _jd f=_ R 2 E_dp 2.
F 0

The radiation power U emitted by the arc per unit length is then

obtained by integration of the radiation balance u = e - a over

the arc cross section:
I

U= _il,I/'=_2_u,/_ 2.
F 0

While _, K and e, as puke material functions at constant

pressure depend only on the temperature, the absorption a is deter-

mined not only by the temperature, but also by the radiation

intensity at the particular location, i.e. by emission and absorption

in the entire vicinity of the incident point. Thus a and also u

are not pure temperature functions, but they also depend on the

current strength I.

III. Electrical Conductivity _(T)

As long as the absorption of radiation can be neglected, only

material properties appear in the energy equation which are

unique functions of temperature. If we introduce the heating
T

current potential S=_I_,/T=S(T) into the energy equation, then
0

solely from the E(i)- and the U(1)- characteristic of the _(S)-

and e(S)- curves, as well as for each current strength I , then

radial distribution of S(r, In ) can be determined. If we now

compare it with the measured temperature distribution T(r, In )
we obtain the curve S(T) and thus the desired functions _(T) and

e(T) independent of current strength In (Maecker, ref. 13 and
Plantikow, ref. 14). The differentiation of S(T) finally gives /337

the heat conductivity K(T). However, this evaluation mode is

possible only to about lO,O00°K for nitrogen because above it

the absorption of radiation takes on increasing importance and

the characteristic U(I) no longer gives information as to the
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course of the radiation balance within the arc. In this case one

must first determine the electrical conductivity _(T) from the

E(1) characteristic and from a number of T(r,l) distributions

over the following integral equation of the Volterra type which

results from the transformation of (2a):

l T.4

liE = G(I) = _ R2__ dp 2= _ _ R2_ [_ (T)/(d_dp2)] ctT,
O 0

Here TA(1) denotes the axis temperature for a current strength I.
The nucleus of this integral equation is known for all current

strengths for which the temperature distribution was measured.

If _(T) is known for a given current strength In_ I up to the

corresponding axis temperature TA,n_ I, that is for 0 _ T _ TA ,n-l'

then for the next highest current strength In the integral in (2b)
can be divided into two parts

]'.4,. - I T A,.

G(l.)=rcR 2 ; cr(-dp2/dT) dT+zcR 2 _ cr(-dp2/dT) dT,
0 T.4, . - I

of which the first can be calculated with the T distribution

T(r,ln). In the small interval between TA,n_ I and TA,n _(T)

is developed into a series about TA,n_ I with few terms for which
all Coeffieicnts, but one, can be obtained from known _(T) curve

at TA,n_ I. The still missing coefficient is determined from the

second interval in (20) whose magnitude is known since G(I n) =

In/E n was measured. Thus a(T) is known up to TA and one can_n

write equation (2c) for In+I in order to calculate _(T)for the
T _ In this way one can proceed

next interval TA, n = = TA, n+l"
from lower current strengths to higher ones if an initial section

of the _(T) curve is already known. As such _(T) was taken from

Plantikow (14) from the radiation-free range where it can be

calculated by the method described at the beginning of this

section. The simplest two possibilities for continuation of the

_(T) curve consist of replacing ._(T) between TA,n_ I and TA, n each
time by a constant value or by a straight line which thus produces

a stepped curve resp. a polygon shape for _(T). If during the
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evaluation very small current steps are used. Then the second

integral in (2c) is considerably smaller than the first and a

relatively small error in the first integral or in G(In) leads to
a large error in the to be determined coefficient of the _(T)

series because of the difference between two large numbers. /338

However, one can avoid this by using very large current steps; but

only a very rough a(T) curve results. In the present measurements

the T(r,l) distributions are given in very narrow I steps. If

in the evaluation one uses a straight line for _(T), then a _(T)

curve with rapidly increasing oscillations results. Therefore,

for the series of __T) in the innermost range TA,n_l _= T L=TA,n
a three-term parabolic curve is always used. Since the errors

in the evaluation values become noticeable especially at the end

of the parabola at TA, n then each time only the first half of the
_(T) parabola is used for the next evaluation step. Thus a non-

oscillating _(T) curve is obtained from which the individual

parabola ends are dropped. The magnitude and the direction of the

parabola ends is used as a criterion for determining how an

optimal average curve for c(T) is to be established. The quality

of this curve can be checked by repeating the described evaluation;

however, one must use the values from the average curve for the

part of the _(T) function assumed to be known. The _(T) curve

resulting from this method is shown in figure i. Its initial

section agrees very well with a _(T) curve (15) determined previously

for the temperature range to 15,000°K from T(r,l) distributions

according to Maecker (4).

With the aid of kinetic gas theory _T) as well as other

material functions can be traced back to the various types of

effective cross sections Z(st) of the associated plasma partnersab
The definition used here for the effective cross sections is

related to the Chapman-Cowling _ integrals as follows:

./

Z_St) J/ .IDa Illh O(S)

.b =8V 2kT(m_+mh) _o.b(,).
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Here the indices a and b denote the particle types of the impact

partners while s and t denote the ranks of the cross sections.

150

100

5O

0 o 5000  o6oo 1500020600 2 ;oo
T/°K

Figure I Electrical conductivity _N,2(T) for p = i atm.

The relation between transport coefficients such as electrical

conductivity and effective cross sections is given in general

determinant form in basic books (such as Chapman and Cowling (16),

Hirschfelder et al. (17) ) as well as somewhat more simply in

various publications (e.g. Ahyte (18), Devoto (19)). I_ one

knows this theoretical relation between the electrical conductivity /339

and the cross sections, then one can obtain information with regard

to the various impact cross sections from the given function _(T).

If one also especially adopts the relations of impac_ cross sections

of different orders Z_z_,#, from the theory, then from the a(T)

curve the cross section for the impact between electron and atom

Z.,(T)=Z_.'t(T) and the coulomb cross section Z_(T)JZ!_'t(T) can be

determined directly. This method for evaluation of effective

cross sections has already been treated in detail in a previous

publication (15) and was carried out for temperatures to about

15,000°K. Just as in this earlier publication, the formula with

two terms in the Sonin polynomial series is used for _(T) which

represents a sufficiently good approximation. For calculating the

relations of impact cross sections of different orders we used the
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model of hard elastic spheres (i?) for impact of electrons with

neutral particles, and the modified Coulomb model (20) for impact

of charged particles. The latter is also used for calculating

the relations of cross sections for impacts between multiple-charge '

particles to those between particles with a single charge. These

relations are given by the explicitly written expressions in Devoto

(21) for the effective cross sections of different orders for the

impact between charged particles. For the impact cross section

of molecules against electrons Zme which is of importance for

_(T) only below 7O00°K, we can use Zme=2 Zae as a rough approximation.
The Coulomb cross section obtained by this evaluation is plotted

in figure 2 along with its theoretical curve in accordance with /340

with Devoto (21). To compare the resulting cross sections Zae

4 4

3 k_ 3_;

2 _ "_-_k---- .... 2

Z_e(theor,) ",_'_',,, :
•.... 10 "13 "e

ft N
/-_ Zae(e×P.)

3- 3_

2 __ 2
Z,,F

'_Oq6 10 q4

5 10 15 20 25 30" 103
T/°K

Figure 2:Various effective cross sections of nitrogen.
evaluated; ...... values taken from the literature

with those from the literature the experimental and the theoretical

cross sections, still velocity dependent, were integrated in

accordance with Neynaber et al. (22) over the velocity volume and

the comparison curves thus obtained were plotted in figure 2 along

The cross section Z thus determined lies exactlywith Zae. ae
between the_two values taken from the literature and has a temperature

dependence similar to those two.

Thus, in addition to a _(T) curve for temperatures to 26,000°K

the curves of effective cross sections in relation to earlier

9



results (15) are also known; these can again be used for calculating
other material functions.

IV. Thermal Conductivity K(T)

Since now _(T) is known, one can calculate the power introduced
p2

within a cylinder with radius r per unit length, namely _R_E2_dp 2 .
o

If we divide this expression according to the once integrated

energy equation by _ 4_p20T/OP2, , then we obtain an effective

heat conductivity as a function of I and _2 in which the energy /341

transport by radiation is contained formally.

,,.orr(p2,1)=-'" _, _ _dp_/(-p2_rl_p2).4 .

2

If we plot this _,(p,I) not against p2 but against T with I

as parameter using the measured .T(/,2,1)-distributions, then we see

that to about lO,000°K there results no single-valued function of

the temp@rature independent of current strength, i.e. that Kef f

is identical, up to this temperature, with the thermal conductivity

K(T) with the addition of a radiation diffusion coefficient.

However, an estimate using the absorption coefficients given by

Wilson and Nicolet (23 ) shows that the radiation diffusion portion

below lO,O00°K as well as in the following temperature range of

i0,000 to 15,000°K, considered here, can be neglected. Thus to

lO,O00°K the thermal conductivity K(T) = Kef f can be evaluated
directly (figure 3). The value of K(T) thus determined exhibits

at about 7000°K the maximum corresponding to transport of energy

of dissociation. The K(T) function agrees extraordinarily well

with earlier experimental results (Burhorn (3), Maecker (5),

Hermann and Monterde (15), Plantikow (12) ) and with the theoretical

K(T) curves (Yos, ref. 24).

For temperatures above lO,O00°K the Kef f (I,T) curves calculated

for various current values I deviate from each other to an increasing

degree and in a systematic fashion which leads one to conclude
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that there are strong contributions of radiation to energy transport.

In this case the heat conductivity K(T) can be evaluated from

the transformed energy equation:

R2 E2 1'2 " 2 R2 /'2

odp_l(-2p_077_p)---SJ uap_l(-2p__op_)_(T)- 2 o

= t¢_rt(l,T) - Qs(l, T)[(- 2p20_Op2).

Here according to equation (la), 2_Qs(I,T)=2_Rpq s is the radiation

current per unit length through the cylinder surface with radius r

and qs is the radiation current density for radius r, which for

symmetry reasons has only a radial component.

In equation (5) we find, in addition to the desired thermal

conductivityK(T) an •additionalunknown function, namely the

radiation balance u resp. the radiation current Qs" As long as

the absorption term a is neglected in the radiation balance u,and
thus u = e depends only on temperature,u can be determinedwith

the aid of equation (3). However, if radiation is absorbed in /342

the arc, then u becomes a function of current strength I and of

temperature T, and K(T) as well as u must be determined from the

energy equation. Since radial temperature distributions T(r,I)

are'known for very many current values, then one can, with certain

assumptions as to the stability of the u(I,T) and K(T) curves,

obtain from the given values information not only about K(T) but

also about u(I,T) as long as the radiation portion of the energy

tr_nsport does not overbalance too greatly the portion attributable

to thermal conduction. For this purpose we shall first investigate

which statements can be made the field of the radiation current

Qs(p2, I) with the aid of the evaluated functions. If K(T) is

already known up to a certain temperatureTin, then the radiation
current .Qs(P2, r) can be determinedfrom equation (Sb) for the

outer regions of arcs of higher current strength, for which T _ Tm,
i.e. for ali values of p2(T_T..)• This means that, especially

for current strengths whose axis temperatures are not much higher

than Tm, the Qx(pZ,l)-curve is known for an additional outer range,

namely for f},2(_,,)_p2_l..In the vicinity of the arc axis the

radiation current Qs varies" approximately porportional to ?

ii
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p2:-Qs(;,2_O,/)_u(p2=O,I)R2//2,.Thus one can extrapolatethe radiation

current Qs(P2,/))without any large errors to the missing range

in the interior, namely to 0_P2_p2(_,,), as long as p2(L,,)_list.

If we write equation (Sb) twice for a fixed temperature,

but for two different current strengths I1 and 12 and then subtract_
the two equations,we obtain the conductivityK(T) depending only
on T and we obtain the relation between the values for the radiation

current Qs for different current strengths, however always for

radial positions with the same temperatureT.

I war(l,,T)-,_af(;2,T)=Qs(l.,T)/(-2P2o_op )I.,T

: -Qs(12, T)/(-2p' _UOp2),,, 7'.

If for a given current strength In the radiation current per unit

length Qs(In,T) for a given temperature T is already known, then

_s(l,T) can be calculated with equation (6) for this temperature
for all current strengths. If, for a relatively low current

strength In, we then obtain by extrapolation the Qs(p_,l,,)-curve

even in the region near the axis, then even for higher current

strengths the region for which _Qs(p2iis known, is expanded,

and for current strengths a little above In extrapolation to the

axis is also possible. In this way one can, starting with low

current strengths where radiation absorption is not important and

where K(T) can be evaluated directly, determine the field Qs(I,T)

for higher current strengths and thus the thermal conductivity /343

K(T) by means of the difference formation described in equation

(5b) as a good approximation,

This evaluation can still be improved if, by iteration, one

modifies the extrapolated Qs(p2).curves in such a way that a

K(T) curve as smooth as possible as well as a smooth ',(P2,1)-

field arises. The radiation balance u(l,T) is obtained by diff-

erentiation from 9_(i!2,1):):

u (T, l) = , (p2 (T), l)=-_ (_Qsit3 p2), .

12
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Figure 3 Thermal conductivity Iq:_-(T) and upper limiting

curves K*(T)

The disadvantage of this method is the fact that errors in the

evaluation results perpetuate themselves and are added so that

the accuracy of the results decreases with increasing distance from

a radiation-free starting point. In addition, since the radiation

share of the energy transport increases strongly and Since, for

higher current strengths the percentage contribution of the thermal

heat loss is very small and since then the possible error in K(T)

becomes too large, this evaluation method should not be used beyond

about 15,000°K.

The resulting K(T) is shown in figure 3 as a solid curve.

Here we see at about 15,000°K the maximum associated with the

ionization peak which was missed in the evaluation when radiation

absorption was not taken into account. This curve agrees well

with the earlier (15) K(T) function evaluated with the temperature

distributions measured by Maecker (4); the maximum is now higher

by about a few percent.

The curve thus determined agrees very well with theoretical /344

K(T) curves. In contrast to this result, most previous evaluations

of measurements in cascade arcs produced K(T) values for nitrogen

(6,7), argon (25), and hydrogen (26) which, above lO,O00°K, fell

well above the theoretical curve.
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Since, however, the K(T) curve, evaluated by the above method,

is subject to a certain undetermined error, we shall still determine

an upper limiting curve for the thermal conductivity in the region

of the ionization peak. Here, unlike earlier, absolute value and

slope of the K(T) at the starting point of the evaluation are not

necessary; a reasonably sure absolute value is sufficient here.

In the following we shall assume that the radiation balance u

near the axis continuously increases as the axis is approached.

Up to 16,000°K this is surely true since in this temperature

range the radiation emission increases greatly with temperature.

With this assumption the envelope of the Keff(T,l) curves

already represents an upper limiting curve for the thermal

conductivity. It corresponds to a K(T) curve which was evaluated

under the assumption of negligible radiation. Its maximum, corres-

ponding to the ionization peak, lies at about 165 mW/cm°K, which

is about 5 times the theoretical value.

An appreciably lo_er lying limiting curve is obtained if one

proceeds, in accordance With the described evaluation, from current

step to current step and if one introduces a constant radiation

balance curve in the as yet unknown channel near the axis:

Here one assumes that for a current strength In the thermal
',2_p251 while in theconductivity is known in the exterior for ;_

interior region O_1,2_;,_must still be determined. Then for :p2=p_

the value of the radiation integral is given by:

2 2 4 2 - 2 2

In the inner region 0</,2_p_we set u(p2)=_,constant where the
p2=p__ the radiation integral isconstant ms chosen so that for

<_ . 2 '

exactly equal to p_,,,.. From that it follows that for 0_l,_t,_

the product "_,,;,2is always smaller or at most equal to the

radiation integral: /345

IJ-" I I'_ '

)ud/>p'n.=/-'_;.dp';Ifor_ 0_-<p2_<p_
o P_ 0

1_
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If in equation (Sa)we replace the radiation integral with the product

_._,2_, then we obtain a value of KI which is greater than the real K..

If we utilize this KI (T) in order to determine, at the next

current step In+ 1 , the radiation integral for /,2=;,_corresponding
to equation (8), then we obtain a value which is too small. If

we again replace the radiation integral with the thus formed !n._,p2
.

in the evaluation of K, then the value of KI determined at In+ I is
larger everywhere than the real K. In this way we established,

starting with T = ll,O00°K, a K[ curve which produces a
maximum

corresponding to the top of the ionization peak somewhat below

15,000°K with the value of K[, max = 65 mW/cm°K (figure 3). The.

actual K-curve should lie appreciably below KI since the assumption.

.0,2) = constant for _ip2_p_., from which we get KI, is always
a very rough approximationbecause of the strong temperature

dependence of the emission.

The upper limiting curve for K(T) can be displaced still

further downward if, instead of a constant value for .0,2) we use

a curve which, everywherewithin 0_,25/_ increases less as it

approaches the axis than the actual .(;,2)and which, when integrated
Q

over _2- at 2 2 agrees with the actual radiation integralp = p_ ,

For, if we establish the radiation integral _dl,' with a "(P2i-
0

curve which satisfies these two conditions, Zhen this integral,

within 10_p2_#_i is always smaller than or at most equal to the

actual value; i.e. a K_T) which is evaluated with this radiation

integral according to equation (Sa) is always greater than the actual

K(T). A ,(),2(T))-curve which satisfies the above conditions can be

obtained from the un values found in the determination of KI if
one assumes that the actual curve of the axis values of the radiation

balance UA(T A) increases with temperature at a lower rate than the
actual function ,,(I..T(/,2))" increasesfor the individual current

strengths in the region near the axis. This one can assume without

much reservation as long as the emission e(T) per unit volume

increasesgreatly with temperature. An evaluationusing this

.'.(#2(,_)_ curve gives a value of K2(T) which lies appreciablybelow KI,

15



but which must lie above the actual K(T). An iteration of this

process produces a still lower, limiting curve K3 (T) which must
also lie above K(T). The K curves are plotted together with the

directly evaluated K(T) curve in figure 3. Since K_ (T) lies only

a little above the evaluated K(T) curve, one can assume that the
J

directly determined K(T) closely approaches the true curve. /346

For that reason, in the following , we take the originally evaluated

K(T) function as the true one in the temperature range lO,O00°K
T a= 15,000°K.

From the K(T) curve around 15,000°K one can determine an

additional effective cross section, namely the charge exchange

cross section Zai. In the area of the ionization peak K consists

of practically only two parts, namely the electron thermal conduc-

tivity K e and the conductivity K I which describes the transport
of ionization energy:

= + K IK Ke

The heat conductivity of the ions can be neglected.

If one utilizes the already determined Coulomb cross sections

and a_sumes, as in chapter III, from theory the relations between

impact cross sections of various orders, then Ke(T) can be calculated.

Since the total conductivity K(T) is given by the evaluation, KI
- Z(I l_and from this the charge exchange cross section z_ ....i can be

determined. Here we obtain, in good agreement with previous

results (15):

Zai(T = 15,000°K) = 1.7 • 10-16 cm2 .

The theoretical value for this cross section at the same temperature,

according to Vanderclice et al. (27) is (see figure 2):

_ai( T = 15,000°K)theoretical = 1.24 ' lO-16cm 2.

With the aid of the previously evaluated cross sections the thermal

conductivity in the temperature range 15,000°K _ T _ 26,000°K

can be calculated. In this range K(T) essentially Consists of three

parts, Ke, KI and the conductivity K21 which describes the transport

16



of the energy required for dual ionization:

+ KI +K = Ke K21

For Ke we used the formula with three terms and for KI and K2I
the formula with two terms each in the polynomial Sonin series.

To calculate KI we assumed the charge exchange cross section Zai
to be constant in the range above 15,000°K. This produces no

large error since the number of atoms decreases rapidly for higher

temperatures for which a deviation of the Zai curve from a constant
value is much more pronounced. The resulting K(T) curve, together

with the one evaluated for T _ 15,000°K is plotted in figure 4.

In addition, an experimental conductivity determined by Westenberg

and De Haas (28)for 0 _ T _ 2000°K is plotted in this figure and /34

is extrapolated until it joins our K(T) curve so that the entire

course of the heat conductivity of nitrogen from 0 to 26,000°K

is known, based on measurements.

60.
/

50

o£40 ¸

30-
E

"_ 20

10 ./

! !

0 5000 10000 15000 20000 25000

Fig. 4. W_irmeleitffihigkeit KN2(T) bei p= I atm

Figure 4 Heat conductivity KN2(T) at p = i atm.

V. Radiation Behavior of the N2 Arc of 5 mm Diam. to 26,000 ° K

Now that not only _(T) but also K(T) have been established

for the entire interesting temperature range, one can calculate,

with the aid of equation (lb) the radiation balance u, i.e. the

difference between emitted and absorbed radiation power per unit

17



volume u=e-a=divqs • In contrast to the pure temperature

function e(T), a and •thus also u depend not only on temperature,

but also on the field strength over the radiation field at the

incident point:

a=a(l,T)=a(l, pZ);

u=e(T)-a(l,T)=u(l,T)=u(l, p2).

In figure 5a the radiation balance u is plotted against p with

current strength I as a parameter. In the core of the arc u is

a maximum. There the emission outweighs by far the absorption.

At the edge of the arc u decreases sharply and finally becomes

negative. Thus there the absorption is greater than the emission

so that the extreme arc layers are heated by radiation. In figure

5b u is plotted against T with I as a parameter.

/3¢8
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125• ",\ 125 '
\X u(T,I)

\. - ...... 53A /

...... 2ooA Ji
_....... \. 570 A ..... 300 A
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t

Figures 5a and b. Difference between radiation power per unit

volume emitted and absorbed in a _5 mm diam. N2 arc at p = 1 atm.
a) plotted against relative radius with current as parameter

b) plotted against temperature with current as parameter.
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The upper ends of the curves each correspond to the axis region.

Here also one can observe a decrease of the u-curves to lower

temperatures, i.e. toward the edge of the arc which can be attributed

to the decrease in emission and the very rapid rise of absorption

in the outer layers of the arc.

Of the radiation emitted across the entire spectrum only a

small portion contributes to energy transport because the free

optical path length is so short for the most part that only a vanishingly

small energy transfer occurs. If one imagines the portion of the

total emission per unit volume which makes a substantial contribution

to the energy transport, pllo_ted against temperature in figure 5b,

then the u(l,T) curves must still lie below this function by the

amount of the radiation power absorbed per unit volume and,

therefore, must lie far below the total emission o_ radiation

power per unit volume. A comparison of the radiation balance

in the arc axis uA with the material quantity e(T) calculated

from data from the literature (23 ) shows that at 12,000°K the

value of uA is about 7% of the emission. The percentage increases

to about 13% at 16,000°K and then drops to about 4% at 24,000°K. /349

Up to about 16,000°K e(T) is determined primarily by the N l-

continuum and the N l-lines in VUV. Since the emission maximum

for nitrogen atoms lies at 15,000°K, and since the emission of

nitrogen ions, i.e. N II-VUV lines sets in only slowly at this

point, the total emission e(T) is flattened somewhat in the range

of 14,000 to 18,000°K. The contribution of the N II contimuum

to the total radiation can be neglected. The UA(T) curve shows

a flattening similar to e(T), but more pronounced and displaced

to higher temperatures. This can presumably be explained by the

fact that the N II lines which first appear as the temperature

increases, soon become optically thick and thus make only a very

small contribution to the radiation balance while the weaker lines

contribute to energy transport only at higher temperatures and

thus bring about a great increase in the radiation balance.
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Figure 6 Relative share of heat conductivity and radiation

on energy transport for various current strengths,

plotted against relative radius.

In order to demonstrate the contribution of radiation to the

total transport, the ratio of qs resp. qT to the entire energy

current density q = qs + qT is formed (figure 6). Integration

of equation (ib) over the cross sectional area of a concentric

cylinder with radius r gives:
r r

2n_aE2rdr=2n_u "d"+ 2n_r(-d_dr)
0 0

=2_rqs+2_rqr=2_rq.

The term on the left giyes the power which is conducted per unit

length within the concentric cylinder with radius r by ohmic heating. /350

This energy is passed by radiation and heat conduction across the

outer surface to the outside. The magnitude of these two portions

is represented by the radiation current 2 _rqs and the heating

current 2 _ rqr per unit length of the cylinder. In figure 6 the

ratios qT/q resp. qs/q are plotted for various current strengths:

qrlq =qT./(qr+ qs)= 2=r qr// (2 _ E2r d r) .

The contribution of radiation to the total transport is always

highest at the axis. Toward the edge increasing amounts of

radiation are absorbed and the energy transport is taken over to

2O



an increasing degree by heat conduction. One can see that for

the highest current strength, i.e. at 570 A, only about 5% of

the added energy is carried off by heat conduction in the area

near the axis. The largest part of about 95% is radiated away.

Thus for high current strengths u(I,T) is affected only weakly

by the value of K(T) used in the evaluation. Even if K(T) is

doubled, u(I,T) changes only little in the core region.

We have thus shown that the behavior of the 5 mm diam. N2

arc is determined to a very considerable extent by radiation energy

transport. Especially at high current values the contribution

of thermal conduction to the energy transport becomes nearly

meaningless in the region near the axis.
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